SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis.

نویسندگان

  • Kai Hou
  • Wei Wu
  • Su-Sheng Gan
چکیده

Small Auxin Up RNA genes (SAURs) are early auxin-responsive genes, but whether any of them are involved in leaf senescence is not known. Auxin, on the other hand, has been shown to have a role in leaf senescence. Some of the external application experiments indicated that auxin can inhibit leaf senescence, whereas other experiments indicated that auxin can promote leaf senescence. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) leaf senescence-associated gene named SAG201, which is highly up-regulated during leaf senescence and can be induced by 1-naphthaleneacetic acid, a synthetic auxin. It encodes a functionally uncharacterized SAUR that has been annotated as SAUR36. Leaf senescence in transfer DNA insertion saur36 knockout lines was delayed as revealed by analyses of chlorophyll content, F(v)/F(m) ratio (a parameter for photosystem II activity), ion leakage, and the expression of leaf senescence marker genes. In contrast, transgenic Arabidopsis plants overexpressing SAUR36 (without its 3' untranslated region [UTR]) displayed an early leaf senescence phenotype. However, plants overexpressing SAUR36 with its 3' UTR were normal and did not exhibit the early-senescence phenotype. These data suggest that SAUR36 is a positive regulator of leaf senescence and may mediate auxin-induced leaf senescence and that the 3' UTR containing a highly conserved downstream destabilizes the SAUR36 transcripts in young leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity

Auxin regulates a variety of physiological and developmental processes in plants. Although auxin acts as a suppressor of leaf senescence, its exact role in this respect has not been clearly defined, aside from circumstantial evidence. It was found here that ARF2 functions in the auxin-mediated control of Arabidopsis leaf longevity, as discovered by screening EMS mutant pools for a delayed leaf ...

متن کامل

A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis.

SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in t...

متن کامل

AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.

In plants, both endogenous mechanisms and environmental signals regulate developmental transitions such as seed germination, induction of flowering, leaf senescence and shedding of senescent organs. Auxin response factors (ARFs) are transcription factors that mediate responses to the plant hormone auxin. We have examined Arabidopsis lines carrying T-DNA insertions in AUXIN RESPONSE FACTOR1 (ARF...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 161 2  شماره 

صفحات  -

تاریخ انتشار 2013